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Abstract. Although Magnetic Resonance Imaging (MRI) is crucial for
segmenting brain tumors, it frequently lacks specific modalities in clinical
practice, which limits prediction performance. In current methods, train-
ing involves multiple stages, and encoders are different for each modality,
which means hybrid modules must be manually designed to incorpo-
rate multiple modalities’ features, lacking interaction across modalities.
To ameliorate this problem, we propose a transformer-based end-to-end
model with just one auto-encoder to provide interactive computations in
any modality missing condition. Considering that it is challenging for a
single model to perceive several missing states, we introduce learnable
modality combination queries to assist the transformer decoder in adjust-
ing to the incomplete multi-modal segmentation. Furthermore, to address
the suboptimization issue of the Transformer under small datasets, we
adopt a re-training mechanism to facilitate convergence to a better local
minimum. The extensive experiments on the BraTS2018 and BraTS2020
datasets demonstrate that our method outperforms the current state-of-
the-art methods for incomplete multi-modal brain tumor segmentation
on average.

Keywords: Query · Re-Training · Incomplete Multi-modal · Brain Tu-
mor Segmentation.

1 Introduction

Magnetic resonance image (MRI) segmentation plays an integral role in quan-
titative brain tumor image analysis, which is designed for different tissues of
brain structures and brain tumors with multiple imaging modalities, such as
Fluid Attenuation Inversion Recovery (FLAIR), contrast enhanced T1-weighted
(T1c), T1-weighted (T1) and T2-weighted (T2). It has been demonstrated that
simultaneously combining four modalities could improve multi-modal MRI per-
formance for brain tumor segmentation [25,13,17,23,8]. Nevertheless, missing
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for missing) - (a) Common Latent Space Models, i.e., RFNet [5]
proposes a framework with separate encoders for each modality, a decoder and hierar-
chical fusion blocks. The four encoders are arranged in a top-to-bottom sequence cor-
responding to the four different modalities: Flair, T1c, T1, and T2. (b) Our proposed
method has a single encoder, a decoder and Modality-Gnostic Transformer (MGT)
Modules that learn modality combination queries to solve all conditions effectively.

modalities are prevalent in clinical practice due to data corruption, different
scanning protocols, and patient conditions [21,11,15,14] , severely reducing pre-
vious segmentation algorithms’ performance. Therefore, a robust multi-modal
approach is required for flexible, practical clinical applications to address the
issue of missing one or more modalities.

Current research on incomplete medical image segmentation [5,3,22,10] pri-
marily considers improving the network’s ability to extract features from dif-
ferent modalities by separate encoders and producing discriminative fusion fea-
tures for segmentation (Figure 1 (a)). Nevertheless, only individual features are
learned, and the information across modalities cannot interact, increasing the
difficulty of feature fusion [24]. To tackle this problem, we introduce a uni-
fied transformer-based encoder that allows direct interaction between different
modalities. This approach entails concatenating different modalities and feed-
ing them into the encoder, whereby the design of self-attention allows for the
natural interaction of the input. However, unified architectures make it difficult
to perceive multiple modalities scenarios and degrade the performance. Fortu-
nately, by exploiting the properties of the attention mechanism, Valanarasu et
al. [18] propose weather-type learnable embeddings to tackle all adverse weather
removal problems in a single encoder-decoder transformer network. Deriving
from the random initialization of the learnable embeddings in [18], we codify
the modally missing combinations and initialize the learnable embeddings with
them, which can provide more informative guidance.

Furthermore, Vision Transformers need a lot of data for training, usually
more than what is necessary to standard CNNs [7]. The transformer-based mod-
els started with randomly initialized parameters, may easily over-fit a small
number of training pairs and make the model be trapped into a poor local min-
imum. Inspired by [16], adopt a re-training mechanism to facilitate convergence
to a better local minimum.
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Fig. 2. Illustration of our proposed QuMo architecture. QuMo comprises three primary
modules: A transformer encoder to extract hierarchical features, Modality-Gnostic
transformer modules and a transformer decoder. A 3D volume concatenated by four
different modality volumes multiplied by a modal code is applied to simulate different
modalities missing states.

To this end, we propose QuMo: Query re-training for Modality-gnostic
incomplete multi-modal brain tumor segmentation to tackle all modality-missing
states simultaneously (Figure 1 (b)). Specifically, our contributions are threefold:

– We propose QuMo : Query re-training for Modality-gnostic incomplete
multi-modal brain tumor segmentation, an effective solution with only one
encoder and one decoder which can provide the direct interaction of different
modalities within the network.

– We propose a Modality-Gnostic transformer module with learnable modality
combination embeddings as queries to effectively handle all the modality-
missing states, making the decoder be aware of different modality combina-
tions. Furthermore, we adopt a query re-training mechanism to facilitate the
model convergence to a better local minimum under small datasets.

– Taking advantage of the proposed method, QuMo could achieve state-of-
the-art performance on the used BraTs2018 and BraTs2020 benchmarks.

2 Method

2.1 Architecture Overview

An overview of QuMo is illustrated in Figure 2, QuMo contains a transformer-
based unified architecture to accept all valid modalities as input simultaneously,
which can provide the direct interaction of different modes within the encoder.
Following previous methods [1,12,13], we exploit the transformer [19] architec-
ture for explicitly long-range contextual modeling within the input MRI modal-
ities effectively In Vision Transformer (ViT) [7], tokens are required to contain
spatial information due to the way they are constructed and the significance
of performing self-attention by windowing in ViT has been demonstrated in
several recent studies, most notably in Swin Transformer [12]. In particular, the
encoder consists of a patch embedding layer and patch merging layers followed by
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Transformer blocks. The decoder is designed to generate the segmentation mask
based on four output feature maps of different resolutions from Modality-Gnostic
Transformer modules (MGTs). In implementations, the transformer blocks in the
decoder follow the same design as the encoder, and we deviate from the encoder
by patch expanding layers and convolutional classifier layers.
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Fig. 3. Left: Configuration of the Modality-Gnostic 3D-W-MCA in the
MGTs. The queries here are learnable embeddings representing the modality combi-
nation, while the keys and values are features taken from the output of the transformer
encoder. Right: The process of our re-training mechanism. The parameters of
the module with slash color backgrounds are initialized as the original rules, while
those with solid background are copied from the former training phase. Noteworthy,
only the projection layers in MGTs are re-Initialized.

2.2 Modality-Gnostic Transformer Module

An autoregressive decoder is used in the original transformer decoder [19] to pre-
dict the output sequence one element at a time. However, the model’s inability
to perceive the modal input state makes dynamic handling of different missing
modalities difficult. Detection transformer (DETR) [2] uses object queries to de-
code the box coordinates and class labels to produce the final predictions. More-
over, TransWeather [18] uses weather type queries to decode different restore
tasks, predict a task feature vector and use it to restore the clean image. In-
spired by them, we define modality combination embeddings as queries to guide
the decoder to perceive different modality-missing situations. The queries are
learnable embeddings that attend to the feature outputs from the encoder and
are learned along with other model parameters during the training phase, illus-
trated in Figure 2. Unlike the self-attention transformer block where Q, K, and
V are taken from the same input, in Modality-Gnostic 3D window multi-head
cross-attention (W-MCA), Q is a modality combination learnable embedding.
At the same time, K and V are tokens from the features taken from the cor-
responding stage of the transformer encoder after linear mapping, illustrated in
Figure 3. The computation in the MGT can be summarized as:

Îl = 3D-W-MCA
(
LN

(
Il−1

)
,Q

)
+ Il−1, Il = MLP(LN(Îl)) + Îl (1)

where Q denotes the learnable queries, LN refers to Layer Normalization, Îl and
Il denote the output features of the MCA module and the MLP module for layer
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l, respectively. The 3D-W-MCA is mathematically described as follows:

K,V = ωk,v(LN
(
Il−1

)
), Q̂ = ωq(Q), Îl = Softmax(

Q̂K⊤
√
d

)V + Il−1 (2)

where ωk,v, ωq are projection functions to produce K, V and Q̂ respectively, d
represents the number of the tokens’ channels.

In this paper, the proposed method contains four Modality-Gnostic trans-
former modules, among which three are at skip-connection layers, and one acts
as the bottleneck layer. The output decoded features are fused with the features
extracted across the MGTs through skip connections and the bottleneck layer
at each stage. At the beginning of the training phase, the learnable embeddings
are initialized with modality-code C = {C1, . . . , CN}, where Ci ∈ {0, 1} repre-
sents whether the Ci modality is missing or not and N represents the number
of modalities. Specifically, we map C through fully connected layers so that the
extended query embeddings can perform matrix multiplication operations with
K.

2.3 Query Re-Training Strategy

Motivated by the observation that a segmentation model may converge to a bet-
ter local minimum by equipping the Transformer encoder-decoder with better-
initialized parameters [16], we design the query retraining mechanism. After the
initial training, we continuously update the encoder and decoder parameters
during training, while periodically resetting the MGTs’ parameters, specifically
the query projection, to encourage improved optimization.

As depicted in Figure 3, we first randomly initialize the entire model, denoted
as process a, and terminate training when validation performance stabilizes. To
further enhance model performance, we then proceed to continuously train the
encoder and decoder after the first initial training while resetting the MGT
modules to avoid convergence to sub-optimal local minima, denoted as process
b. This process is repeated periodically until the best possible performance is
achieved.

2.4 Loss Function

The segmentation results are learned under the supervision of the ground truth.
Specifically, we supervise the transformer blocks in the decoder in a stage-wise
manner. This deep supervision strategy [20] lets the transformer blocks focus on
meaningful semantic regions at different scales. The training loss is based on the
combination of a weighted cross-entropy loss LWCE [3] to address the imbalance
of different regions and a Dice loss LDL, expressed as:

L =

N∑
i=1

(LWCE (ŷi, yi) + LDL (ŷi, yi)) , (3)
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where N denotes the number of training data, ŷi and yi denote predicted seg-
mentation results and the ground-truth. LWCE and LDL are formulated as:

LWCE =
∑
k∈K

∥−ωk · yk · log (ŷk)∥1
H ·W · Z

,LDL = 1−
∑
k∈K

2 · ∥ŷk
⋂

yk∥1
Knum · (∥ŷk∥1 + ∥yk∥1)

,

(4)
where ∥ · ∥1 denotes the L1 norm, and H, W , Z denote the height, width and
slice number of the 3D volumes, respectively. K denotes the set of brain tumor
regions, including BG (background), NCR/NET, ED and ET. ωk is the weight

for the region k and ωk = 1 − ∥yk∥1∑
k′∈K∥yk′∥1

.
⋂

denotes the overlap between

predictions and ground-truth masks, and Knum denotes the number of regions
in K.

3 Experiments

3.1 Implementation Details

Datasets We evaluate our method on the Multi-modal Brain Tumor Segmen-
tation Challenge 2018 (BraTS2018) dataset and the BraTs2020 dataset. Each
subject in the dataset contains four MRI contrasts (FLAIR, T1c, T1, T2), follow-
ing the challenge, there are three segmentation classes, including whole tumor
(“complete”), core tumor (“core”) and enhancing tumor (“enhancing”). The
ground truth was obtained by expert manual annotation.

Experimental Setup For the image pre-processing, the MRI images are skull-
stripped, co-registered and re-sampled to 1mm3 resolution by the data collector.
In this work, following [3], we additionally cut out the black background area
outside the brain and normalize each MRI modality to zero mean and unit vari-
ance in the brain area. During training, input images are randomly cropped
to 128 × 128 × 128 and are then augmented with random rotations, intensity
shifts and mirror flipping. We train our network with a batch size of 1 in three
re-training cycles. Adam optimizer [9] with a cosine scheduler is leveraged to
optimize the network with β1 and β2 of 0.9 and 0.999 respectively.

3.2 Performance Comparison

To evaluate the performance, we compare our model with four state-of-the-
art methods using a commonly used performance metric Dice [4], including
U-HVED [6], RobustSeg [3], RFNet [5] and mmformer [22], all experiments
were conducted employing the same train and test split lists as U-HVED [6]
on BRATS2018 and RFNet [5] on BRATS2020 for a fair comparison.

As shown in Table 1 and Figure 4, our method achieves superior segmentation
performance. For example, compared with the previous state-of-the-art method,
i.e., RFNet [5], our QuMo improves the average Dice scores by 1.10%, 1.66% and
3.93% in the whole tumor, the tumor core and the enhancing tumor, respectively.
Moreover, our method outperforms the state-of-the-art methods on the vast
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Table 1. Results of state-of-the-art unified models (U-HVED [6],RobustSeg [3],
RFNet [5],mmformer [22]) and our method QuMo, on BraTS 2018 dataset. Dice simi-
larity coefficient (DSC) [%] is employed for evaluation with every combination settings
of modalities. • and ◦ denote available and missing modalities, respectively. The results
with underlined denote the second best and with bold shows the best performance.

Modalities
Dice(%)

Complete Core Enhancing

F T1 T1c T2 [6] [3] [5] [22] Ours [6] [3] [5] [22] Ours [6] [3] [5] [22] Ours

◦ ◦ ◦ • 80.90 82.24 85.10 83.90 86.06 54.10 57.49 66.95 66.20 70.53 30.80 28.97 44.56 38.81 42.15
◦ ◦ • ◦ 62.40 73.31 73.61 74.77 77.60 66.70 76.83 80.29 79.92 81.09 65.50 67.07 68.10 72.28 75.55
◦ • ◦ ◦ 52.40 70.11 74.79 74.24 77.51 37.20 47.90 65.23 62.26 65.80 13.70 17.29 34.02 31.34 40.65
• ◦ ◦ ◦ 82.10 85.69 85.79 86.00 89.25 50.40 53.57 62.57 60.82 68.28 24.80 25.69 35.29 33.47 44.28
◦ ◦ • • 82.70 85.19 85.62 85.48 86.75 73.70 80.20 82.35 82.46 83.63 70.20 69.71 72.53 73.64 74.97
◦ • • ◦ 66.80 77.18 77.53 78.35 79.36 69.70 78.72 81.34 81.82 82.04 67.00 69.06 73.72 74.81 76.00
• • ◦ ◦ 84.30 88.24 88.99 88.26 90.10 55.30 60.68 72.22 68.67 74.19 24.20 32.13 43.29 35.96 49.02
◦ • ◦ • 82.20 84.78 85.37 85.35 86.59 57.20 62.19 71.07 68.51 73.18 30.70 32.01 46.06 40.83 46.37
• ◦ ◦ • 87.50 88.28 89.28 88.72 90.37 59.70 61.16 71.75 67.90 74.22 34.60 33.84 47.07 40.20 48.56
• ◦ • ◦ 85.50 88.51 89.39 88.61 89.32 72.90 80.62 81.56 81.66 83.28 70.30 70.30 73.50 74.09 77.34
• • • ◦ 86.20 88.73 89.87 88.54 89.24 74.20 81.06 82.27 82.63 83.64 71.10 70.78 72.78 74.45 77.46
• • ◦ • 88.00 88.81 90.00 89.20 90.51 61.50 64.38 74.02 70.24 74.76 34.10 36.41 45.75 39.67 52.56
• ◦ • • 88.60 89.27 90.36 89.39 89.69 75.60 80.72 82.56 82.41 83.41 71.20 70.88 74.14 74.08 77.08
◦ • • • 83.30 86.01 86.13 85.78 86.91 75.30 80.33 82.87 80.33 83.33 71.10 70.10 72.84 71.10 76.53
• • • • 88.80 89.45 90.59 89.45 89.66 76.40 80.86 82.94 80.86 83.58 71.70 71.13 72.90 71.70 77.05

Average 80.10 84.39 85.49 85.07 86.59 64.00 69.78 76.00 74.75 77.66 50.00 51.02 58.44 56.95 62.37

majority of fifteen multi-modal combinations, including 11 out of 15 cases for the
whole tumor, all cases for the core tumor, 14 out of 15 cases for the enhancing
tumor. The quantitative results show that our QuMo brings more significant
growth for enhancing tumor region, which are more challenging to segment,
particularly improve the Dice scores by 8.99% when only Flair modality exists.
We undertake additional validation to verify the efficacy of our model on the
Brats2020 dataset. The results illustrated in Table 2 show our method yields
superior performance compared to the State-of-the-Art (SOTA).

We conduct a comparison of computational complexity and model size. The
result in Table 6 shows that our method is smaller than other algorithms in
FLOPs(G) and smaller than transformer-based algorithms mmFormer[22] in
model parameters. Visualization results in Figure 6 illustrate that our method
is able to segment brain tumors well in various missing scenarios. For example,
QuMo predicts an accurate segmentation map with only the T2 modal image. As
the number of modes increases, the performance of the model becomes progres-
sively better, and the performance in some severely missing cases is close to that
in the full mode, e.g.T2 and F+T1. These results demonstrate the superiority of
our method for incomplete multimodal learning of brain tumor segmentation.

3.3 Ablation Study

In this section, we investigate the MGT module, deep supervision and the re-
training strategy, which are the key components of our method. All ablation ex-
periments were conducted on the BraTS2018 dataset. We first set up a baseline
network (“ Baseline ”) that does not use any MGT modules or deep supervision



8 Chen et al.

Table 2. Results of previous models and
our method on BraTS 2020 dataset.

Methods
Dice(%)

Comp. Core En.

U-HVED [6] 81.24 67.19 48.55
Robust [3] 84.17 73.45 55.49
RFNet [5] 86.98 78.23 61.47

mmFormer [22] 86.49 76.06 63.19
Ours 87.65 78.37 63.21

Table 3. Ablation study of critical com-
ponents of QuMo.

MGT
D.S. Init. Average Dice(%)

Bottle. Skip.

% % % - 71.09

% % " - 73.27

" % % Rand 73.62

" % " Rand 75.01

" " " Rand 75.10

" " " Code 75.54

Table 4. The number of queries.

Number
Dice(%)

Complete Core Enhancing Average

0 85.93 76.24 57.76 73.27
200 85.73 75.90 59.87 73.83
300 86.26 76.42 59.87 74.18
400 86.45 77.61 61.98 75.34
500 86.59 77.66 62.37 75.54
600 86.65 77.79 61.43 75.29

Table 5. Number of re-training cycles.

Cycle
Avg. Dice(%)

w/o R.T. Ours

0 72.73 -
1 73.06 73.82
2 72.42 74.04
3 72.57 74.71
4 73.44 75.54
5 72.13 75.24

in our network. Then we add the MGT modules gradually on the Bottleneck
Layer and the Skip Connection. We compare the performance of these networks
on the Dice score, averaging over the 15 possible situations of input modalities.
As shown in Table 3, we evaluate the influence of MGT in the bottleneck layer
(Bottle.), skip-connection layers (Skip.), deep supervision (D.S.) and different
initialization strategies (Random Initialization and Modal Code Initialization).
Specifically, employing a randomly initialized MGT in the bottleneck layer with-
out deep supervision increases the average Dice scores of three tumor regions by
3.92%, compared with “ Baseline ”, which demonstrates the superiority of the
introduced queries. Moreover, our method of applying multi-scale MGTs with
deep supervision increases the results over the “ Baseline ” by 4.45%.

As shown in Figure 5, we also visualized the attention maps corresponding to
different queries of our proposed MGTs. The notation Qn positioned on the left
denotes the query’s numerical index. Brighter areas represent greater activation
values. It is evident from the figure that the sensitivity of the same query varies
for different modal combinations, which way would make the decoder aware of
the modal combinations.

Moreover, we analyze the impacts of the different numbers of queries. As
shown in Table 4, performance increases with the number of queries until the
number is around 500, since more queries contain more informative knowledge
to perceive different modality-missing states.
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Fig. 4. Qualitative comparison of different models in BraTs2018 dataset.
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Furthermore, we investigate the impact of varying the number of re-training
cycles on model performance. Specifically, a comparison was made between a
training approach that did not incorporate the re-training strategy but had
an equal total epoch count, and a training approach that incorporated the re-
training strategy within each cycle, where the model weights for each cycle were
initialized using the parameters generated by the preceding re-training cycle.
The experimental outcomes are reported in Table 5, which exhibit a noteworthy
enhancement in model performance following several re-training cycles. It was
observed that a state of equilibrium was attained after four cycles, and therefore,
four cycles were selected for the subsequent experiments.

Table 6. Comparison of computational complexity and model size.

Models FLOPs(G) Params(MB)

RFNet 830 8.98
mmFormer 234 35.34

MFI 2045 30.91
QuMo(Ours) 233 24.65
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Fig. 5. Visualization of attention maps corresponding to different queries of our pro-
posed MGTs. The notation Qn positioned on the left denotes the query’s numerical
index. Brighter areas represent greater activation values. The same query is sensitive
to different modal combinations and can be activated by different combinations in
multiple degrees, in which way would make the decoder aware of the modal combina-
tions. Furthermore, diagonal activation values, which are higher, indicating that these
queries are proficient in acquiring location information, signifying that each part has
the maximum response at its corresponding location.

Q84

Q10

Q115

Flair+T1+T2Flair                Flair+T2T2 T1c T1 Flair+T1+T2
+T1c

Dim. Of the Embedding of windows

Dim. Of Query

4 Conclusion

In this work, we design a novel incomplete multi-modal brain tumor segmen-
tation method with a unified encoder-decoder architecture, which can provide
the direct interaction of different modalities within the network and adopt a
re-training mechanism to void convergence to sub-optimal local minima. Specifi-
cally, we apply the learnable modality combination embeddings (query) to guide
the model to perceive different modality-missing states. Our model outperforms
the state-of-the-art approach on the BraTS2018 and BraTS2020 datasets. How-
ever, despite the impressive performance of the QuMo, some additional works
remain verified. We are particularly interested in QuMo’s performance in other
multi-modal tasks due to its availability for multi-modal perceptible interactions.
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